Appendix B. Comparison of Potential Emissions from Waste Combustion with 40 CFR 60 Subpart DDDD Limits.

Pollutant	Emission Limit at	Units	Haas Cabinet	HomeCrest Potential	Maxon Potential	Mead Johnson	Ampcor11 Potential	SpringsValley Potential	GE Plastics	Emission Factor
	7% O2		Potential	Emissions	Emissions	Potential	Emissions	Emissions	Potential	(lb/ton)
			Emissions			Emissions			Emissions	
Design			95	250	625	250	150	300	8000	
Capacity										
(lb/hr)										
PM	70	mg/dscm	87	228	570	228	137	274	30	7.00 E+00 ¹
SO2	20	ppm _{vd}	12	31	76	31	18	37	0.3	2.5 E+00 ¹
NOx	388	ppm_{vd}	19	51	128	51	31	61	128.5	3.0 E+00 ¹
CO	157	ppm_{vd}	106	280	699	280	168	336	85.6	1.00 E+01 ¹
HCI	62	ppm_{vd}	274	720	1800	720	432	864	NA	3.35 E+01 ²
Pb	0.04	mg/dscm	1	2	6	2	1	3	NA	7.28 E-02 ³
Hg	0.47	mg/dscm	1	3	9	3	2	4	NA	1.07 E-01 ⁴
Cd	0.004	mg/dscm	0.07	0.18	0.45	0.18	0.11	0.21	NA	5.48 E-03 ⁵
Dioxin/ Furans	0.41 TEQ	ng/dscm	1	2	4	2	1	2	2.0E-04	2.55 E-07 ⁶

Note: Assumptions for lb/hr conversion to mg/dscm or ppmvd units: 1600 dscf/min and 12%O2. Since information was not available for these units the average dscf and %O2 from medical waste incinerator stack tests was used as an estimate for these incinerators.

¹ - Emission factor from Table 2.1-12, Uncontrolled Emission Factors for Refuse Combustors other than Municipal Waste, U.S. EPA AP-42 Volume 1 5th Edition Supplement B Chapter 2.1, Refuse Combustion, October 1996.

² - Emission factor from Table 2.3-3, Emission Factors for Hydrogen Chloride (HCl) and Polychlorinated Biphenyls (PCBs) for Controlled Air Medical Waste Incinerators, U.S. EPA AP-42 Volume 1 5th Edition Chapter 2.3, Medical Waste Incineration, July 1993.

³ - Emission factor from Table 2.3-2, Emission Factors for Total Particulate Matter, Lead, and Total Organic Compounds (TOC) for Controlled Air Medical Waste Incinerators, U.S. EPA AP-42 Volume 1 5th Edition Chapter 2.3, Medical Waste Incineration, July 1993.

⁴ - Emission factor from Table 2.3-7, Emission Factors for Manganese, Mercury, and Nickel for Controlled Air Medical Waste Incinerators, U.S. EPA AP-42 Volume 1 5th Edition Chapter 2.3, Medical Waste Incineration, July 1993.

⁵ - Emission factor from Table 2.3-5, Emission Factors for Barium, Beryllium, and Cadmium for Controlled Air Medical Waste Incinerators, U.S. EPA AP-42 Volume 1 5th Edition Chapter 2.3, Medical Waste Incineration, July 1993.

⁶ - Emission factor from Table 2.3-11, Emission Factors for Chlorinated dibenzo-p-dioxin for Controlled Air Medical Waste Incinerators, U.S. EPA AP-42 Volume 1 5th Edition Chapter 2.3, Medical Waste Incineration, July 1993. Emission factor for 2,3,7,8-TCDD was selected to compare to the emission limit in TEQ (toxic equivalency basis), since the TEQ for 2,3,7,7-TCDD is large compared to the other species.

^{*}GE Plastics - Liquid Waste Incinerator - AP 42 Emission Factors are not available for a liquid waste incinerator, emission factors from air permit are used. NA = Not applicable based on process knowledge. Emissions estimates represent emissions from both waste and natural gas fuel combustion.